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Abstract

The subject of this thesis is how the Nix package management system can be
applied to manage a whole Linux distribution. Many conventional package
management systems have drawbacks that Nix fixes. But, Nix has never been
used to deploy and manage a whole system.

In this thesis a proof of concept Linux distribution called NixOS is described.
NixOS uses the Nix package management system to manage all software that
is installed on the system, including the Linux kernel, all software and system
services.

Using Nix to manage all software on a system, as is done on NixOS, has several
advantages. Developers don’t need to be worried that unwanted dependencies
are picked up during the build of a software package, since these are completely
eliminated. System administrators get the possibility to deploy services using
Nix and how they can immediately use all benefits from Nix, including atomic
upgrades and rollbacks, without going through a painful cycle of rolling back a
service, with all its, possibly also updated, dependencies.

This thesis describes the implementation NixOS, including pitfalls that were
encountered and choices that were made. Also shown are some concrete results
of running NixOS and how NixOS can be bettered.
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Chapter 1

Introduction

Software management is important on modern computer systems. The way
software is installed and maintained affects the ways a system can be effectively
used by its users (endusers and developers) and its system adminstrators.

If software on a system is not managed properly (or not managed at all) a
system soon turn into chaos. New versions of software are installed on top of old
versions, software might be installed or deinstalled incompletely, dependencies
of software packages might be missing, parts of two (or more) different versions
of a package might get mixed up and it would be hard to see what is actually
installed on a system. It would be a maintenance nightmare and the system
would become unusable over time.

For these reasons operating systems use package managers. Package managers
take care of all the details of installing, removing and configuring software on a
system. Every mainstream operating system has some form of package manage-
ment. Some package managers are quite sophisticated (RPM on Linux), others
are quite limited in what they can do (various installation tools on Microsoft
Windows).

Package managers help a lot in maintaining software on an operating system,
but it seems that many package manager are not using the full potential of what
a package manager can do. Newer systems, such as Nix[12] can do a lot more,
but have not been used to manage a whole system.

In this thesis it will be shown that using Nix to manage a whole system is
very well possible and how it solves a few issues that happen on systems using
conventional package management systems for free.

7



1.1 Issues with package managers

1.1 Issues with package managers

Package managers make life for users, developers and administrators a lot easier,
by taking care of all the details of installing, removing and configuring software
on a system. Package managers are not perfect and many suffer from a number
of issues.

In current mainstream operating systems software is installed in fixed loca-
tions in the filesystem. On Unix(-like) systems this is often /bin, /usr/bin or
/usr/local/bin. Users who have these locations in their default search path
(through the environment variable PATH) can make use of these programs. If
a new program is installed in any of the fixed locations users can immediately
make use of the program, without having to change anything to their setup.
While this mechanism makes sense, it also has a few implications.

One of the implications is that nearly always only one version of a software
package can be installed on the system by the package manager. Installing
multiple versions of a software package on a system is possible, but the packager
has to do extra effort to make this work, for example by making the other version
of the package look like a different package (for example by changing the names
of all programs by appending version numbers), or by installing it into a location
that differs from that of the original package.

Installing each package in a different location or under a different name avoids
packages conflicting with each other, but a user is exposed to this mechanism:
if a user wants to use a particular version, the exact location or the name of a
certain version of the program has to be known in advance, or the search path
for programs has to be adapted to make sure that that particular location is
searched as well, and before any other locations other versions might be installed
in. So, the user has to have explicit knowledge of where the software is installed
on the system.

An upgrade or update of a package is often done by removing the old version
of the package from the system and installing the new version in its place. This
process is not an atomic operation, because during removal of the old version
and installation of the new version there is a time window where a user is still
able to start the program, even though it is not even completely installed, or
removed, yet. For a short period of time the two programs are mixed.

Rollbacks to an older installed version of a package are difficult. Extra state has
to be kept, such as the package itself, and all its configuration information. If
a package has dependencies, these have to be be rolled back to the appropriate
state as well. Only some package managers keep state, but only if they are
explictely configured to do so.
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Existing Unix package management systems 1.2

Packagers have to be very careful when building packages to prevent that un-
wanted and undeclared dependencies are used during the build of a package.
The configuration process of many packages often contains hardcoded links to
tools and other packages, or it searches for tools and other packages on the
system, which are not declared as a dependency by the build scripts. If these
packages are used by the program, but not deployed on a target machine, the
package might fail to run. In such situations the dependencies of the package
are not complete. If the target system has packages installed which satisfy the
dependencies of the package, for example because the dependency system is
based on names, but which actually do not implement the same functionality,
(for example, there are several packages that have the same name, such as the
aterm library and the aterm terminal) the package will install, but might not
run. In this situation the dependency is not correct.

1.1.1 Requirements for a better system

Multiple versions It should be possible to install and use multiple versions
or variants of a particular software package next to each other, without
one version of the package interfering with another version.

Atomic updates Updates of software packages should be done in an atomic
fashion. That is, the update process should never interfere with the exe-
cution of a program in any way.

Atomic rollbacks If a program does not work correctly it should be possible
to roll back to an older version easily and atomically, complete with its
configuration information.

Correctness and completeness of dependencies Every dependency of a pack-
age also has to be installed when that package is installed. Also, the right
version of the dependency should be installed. All the dependencies for a
package should be complete and correct.

Most current software deployment systems don’t offer any or just a few of these
features.

1.2 Existing Unix package management systems

In the Unix family of operating systems there is a huge amount of package man-
agement systems available. Every Unix system from every vendor comes with its
own package management system and often there are third party replacement
package management systems available.

Linux has grown to be one of the most popular operating systems in the Unix
and Unix-like operating systems family.
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1.2 Existing Unix package management systems

Unlike other Unix(-like) operating systems Linux is not a whole operating sys-
tem from one single vendor, but merely a kernel developed by a lot of companies
and individuals from all over the world. What is commonly referred to “Linux”
is in fact a combination of various programs, which are maintained by different
independent developer groups. For example, the Linux kernel is maintained
by the Linux kernel team, while the C library, compiler and many utilities
needed to create a functioning system are maintained by the GNU project. The
combination of all these different software packages, along with an installer,
maintenance tools and documentation, is often referred to as a “distribution”.
Popular distributions are Red Hat Enterprise Linux, Fedora Core Linux, SUSE
Linux, Debian GNU/Linux, Ubuntu, Slackware and Gentoo. In total there are
nearly 500 Linux distributions [1] and this number has been growing steadily
over the years.

Because Linux is just a kernel and there is no central organization defining how
a Linux-based operating system should be created, there is also no standard
way to install software on a Linux system.

On the majority of Linux systems software is installed either using the RPM
package manager (SUSE Linux, Red Hat Linux and Fedora Core are prime
examples), dpkg (Debian GNU/Linux, Ubuntu and others), or a home-grown
solution (like Gentoo Linux and many others).

1.2.1 RPM (Linux)

The most popular package management system on Linux is RPM[2]. The
RPM convention is that packages install in standard, fixed, locations such as
/usr/bin.

Installing multiple versions

Installing multiple versions of software packages is possible with RPM, as long
as files inside the packages don’t try to install in the same location. If two files
share the same location there is a conflict.

Atomic updates

In a default RPM setup updating a package is not done in an atomic way. The
update process hides nothing from the user. During an update action the old
software is overwritten by the new software and it is therefore possible that when
a users starts the program during the update, files from both the old version
and new version are used.
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Existing Unix package management systems 1.2

Rollbacks

RPM installs and updates can be transactional (but they do not have the ACID
properties from databases). When one or several packages are installed with
RPM it is put in a transaction. The RPM database keeps a record of which
transaction a particular package was installed in. If a package is upgraded
or deleted the old version is first packed into a new RPM file and kept in a
directory. Rollbacks need to be explicitely enabled by administrators and are
based on times/dates, not on versions[3][4].

Dependencies

Dependencies in RPM (both at run time and at build time) can be declared in
various ways, including other RPM packages, libraries, paths and capabilities,
all of which could be satisfied by different packages.

If a dependency is a RPM package then any RPM package that has the same
name as the RPM package that is needed is enough to satisfy the dependency.
The dependencies can be very generic (just a name), or more specific (name and
version number).

Two different packages could both provide a library called libfoo.so.1, both
of which could implement completely different functionality. If a package needs
libfoo.so.1 the dependency will be satisfied by either of the two packages.

The same is true for paths. Two different packages could provide a program
that would be installed in the same path, for example /foo/bar/bin/baz with
completely different behaviour. If a package would depend on this path either
two packages would satisfy the dependency.

Capabilities are a bit fuzzier than the previously mentioned dependency, be-
cause they describe a functionality, such as “webserver” or “mailserver”. These
functionalities often describe well known functionality, where different imple-
mentations can be used interchangebly, because they work according to well
defined interfaces.

RPM is a system for binary deployment, but it also offers an environment to
build packages. Builds of RPM packages are done using a so called “RPM spec
file”, which is a recipe for building the package. Inside this file configuration
information is recorded, such as which files have to be installed, where files
have to be installed, which configuration options have to be used and what
dependencies a package has, and so on.

RPM does not enforce that all dependencies are met during a build, or during
an install. It is not guaranteed that a package built on one system will actually
install on another system.
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1.2 Existing Unix package management systems

A drawback of RPM is that during builds of RPM packages on a system it
matters a lot what software is already installed on the system. One of the things
that can happen is that the build process automatically detects software that is
installed on the system and subsequently uses it, without it being declared as a
dependency in RPM. A package can build on a developer’s machine and install
perfectly on a deployment machine, but fail to run, because the non-declared
dependencies are not met on the deployment machine.

The whole environment, including the search path for executables, PATH, is left
intact during a build with RPM. If a developer happens to have certain paths
in PATH containing software not maintained by RPM, the build process can pick
up this software during the build and introduce unwanted dependencies that
are not detected by RPM. As these dependencies are not recorded they can not
be fulfilled during install time, or go unnoticed until run time, when a package
suddenly breaks.

1.2.2 FreeBSD

Another package management philosophy can be seen on the BSD operating sys-
tems (and, for that matter, all other commercial Unix operating systems). The
BSD systems setup diffr from the Linux one. First of all, there is a distinction
between a “base system” and software that is installed additionally. The base
system consists of the kernel, C library and a set of tools that give a minimal,
yet complete working Unix environment. The base system is not managed by
any package manager.

Additional software is installed in different part of the filesystem hierarchy, apart
from packages in the base system. Typically additional packages are installed
under /usr/local. The most popular BSD operating system is FreeBSD.

In FreeBSD additional software packages are kept in the “ports collection”[5].
The ports collection contains descriptions how to build certain packages, includ-
ing patches. This distinction between the base system and ports means that
there are two different ways to install software on the system.

Installing multiple versions

A software package can be installed as a part of the base system, or as a port.
Inside the base system only one version of a package can be installed. If multiple
versions are installed, one of these is always from the ports, since the base
system can only contain one version, or all versions are installed from the ports
collection. As with other package managers, it is necessary to know the exact
name and path of the version you need.
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Nix package management system 1.3

Atomic updates

When a new base system is installed, policy says that the system should be
rebooted to single user mode by the root user when installing the new base
system[8]. This prevents users from accidentily having logged into the system
when the update is done. This is just policy and the install mechanisms don’t
enforce this. The install process itself is not done in an atomic way.

Ports are first built in a separate build directory, before installation. The default
install process will not remove the old port first, but simply overwrite the old
package and record the new package in the database. If the old package is
subsequently removed files from the old package will be removed, even if these
are also part of the new package.

To avoid this the portupgrade is frequently used. This tool first deinstalls and
backs up a previously installed port before installing a new port and reinstalls
the old version in case the new install fails.

Rollbacks

Packages in the base system are supposed to be installed as one set of packages.
A rollback of a package in the base system typically means rolling back the
whole base system.

Tools like portupgrade and portdowngrade [6] help with keeping management
of software installed from the ports a bit sane but doing a rollback is often a
chore, because the tools don’t keep backups themselves[7].

Dependencies

The base system has no concept of dependencies as it is built and deployed as if
it were one package. It can be configured to include or exclude certain features.

Packages inside the ports collection only have dependencies on other packages
in the ports collection. The base system is always assumed to just “be there”.
Like with RPM systems build time dependencies and run time dependencies
can accidentily be picked up during compile time.

1.3 Nix package management system

The problems described above are not impossible to solve and are in fact already
solved in the the Nix deployment system[12]. Nix is a modern and versatile
software deployment system. Its main merit is safe and complete installation of
software.
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1.3 Nix package management system

{stdenv, fetchurl, ncurses}: 1

stdenv.mkDerivation {
name = "vim-7.0";
builder = ./builder.sh; 2

src = fetchurl {
url = ftp://ftp.vim.org/pub/vim/unix/vim-7.0.tar.bz2; 3

md5 = "4ca69757678272f718b1041c810d82d8";
};
buildInputs = [ncurses];

}

Figure 1.1: A Nix expression for the Vim editor

With Nix it is possible to always differentiate between different versions of soft-
ware, even if the difference is not in the software itself, but in the configuration
options that were used to build the software, or when something upstream in the
build process differs, for example in the toolchain (compiler, linker, assembler
and so on) or other dependencies that were used to build the software.

It can tell versions apart by taking all “inputs” of the build process of a package,
like other packages the package depends on, configuration options, compile flags,
environment variables, sources and so on, to compute a unique cryptograhic
hash. This hash is embedded into the path the software is installed into. Nix
keeps all packages it builds in the so called “Nix store”.

The build process is described by a Nix expression. An expression can take
parameters, just like a function in a programming language. An expression for
the Vim editor can be found in figure 1.1. The parameters 1 , the builder script
2 and the sources 3 for the Vim editor itself are inputs. The result of evaluating
this expression is that Vim will be compiled and installed into the Nix store in
a path containing the hash that Nix computed using all inputs.

If one of the inputs is changed and the package is rebuilt, a different hash
is computed and the package will be installed into a different path in the Nix
store. This way an upgrade of a software package will not overwrite a previously
installed version. That is, there is no “destructive upgrading” in Nix, as there
is in other software deployment systems.

When a package is added to the Nix store it is marked as “read-only” to prevent
that its contents are changed later on. Because packages cannot be changed after
installation packages the installation process becomes deterministic: a build of
a package with exactly the same parameters always yields the same result.

When a software package is installed with Nix it is guaranteed that all depen-
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Nix package management system 1.3

/nix/store

5mq2jcn36ldl...-subversion-1.1.2

bin

svn

/nix/var/nix/profiles

default

default-42-link

default-43-link

g32imf68vvbw...-firefox-1.0.1

bin

firefox

0c1p5z4kda11...-user-env

bin

svn

3aw2pdyx2jfc...-user-env

bin

svn

firefox

dpmvp969yhdq...-subversion-1.1.3

bin

svn

switch

/home/alice

.nix-profile

/home/bob

.nix-profile

/home/carol

.nix-profile

carol

carol-23-link

PATH=~/.nix-profile/bin

Figure 1.2: Nix profiles (from [12], figure 2.11)

dencies are installed as well. This is because Nix only relies on what is installed
inside the Nix store. If a dependency for a package is missing in the Nix store,
it will be installed by Nix.

If a user installs software using Nix, he is not confronted with the hashes that
Nix uses. Nix creates a user environment instead, based on which packages a
user has chosen to install. A user environment is nothing but a set of symbolic
links into specific versions of the package the user wants to have installed. When
a package is added to a user environment it is first installed inside the Nix store,
with a unique path containing the Nix hash. After that a new user environment
is created, containing all symbolic links from the old user environment and
symbolic links to the new package. As soon as the user installs or deinstalls a
package the user environment is updated in an atomic operation.

A user can use any of the various generations of a user environment. By default
the user uses the latest generation of his user environment, but it is easy to
switch. All generations of a user environment, including the current link to the
user environment that is used, is called a profile (see figure 1.2).

Switching between two different versions of a profile only involves making a
symbolic link to the right profile, which can be done in one atomic operation.
Because old versions from packages are not directly deleted from the harddisk,
old instances that were already running can keep running without a hitch.
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1.4 Goals

Installing multiple versions

Multiple versions of a package can be safely installed next to each other. They
do not conflict because of the way Nix uses cryptographic hashes in the path
the software is installed into.

Atomic updates

Updates in Nix are atomic. A new package will not be availabe in a Nix user
environment unless it has been completely installed inside the Nix store under a
certain path with a cryptographic hash. The user never directly interacts with
the paths inside the Nix store, but only with the user environment. Switch-
ing between an old user environment, without the new package and the new
environment is an atomic operation in Nix.

Rollbacks

Because packages can be installed next to each other with Nix and packages are
not overwritten during the update of a package, it is easy to do a rollback to a
previous version. The rollback of a package is the same action as an update or
install of a package and can be done with an atomic operation.

Dependencies

Dependencies are guaranteed to be correct and complete in Nix. During the
build process of a software package these dependencies are recorded and will be
installed when the software package is installed.

1.4 Goals

The Nix deployment system provides all the needed basic functionality, but so
far it has not been used to manage a complete system. Nix is being used on
many systems, but always next to another package manager, such as RPM.
That is, the base operating system is not managed by Nix.

The following questions that arose during this project were:

1. Can Nix be used as a package manager to manage a complete system?

2. Can Nix be used to manage and store system configurations? If not, why
not?

To answer these questions a Linux distribution, called “NixOS” was made.
Linux was chosen as the basis for NixOS for various reasons:
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Issues for NixOS 1.5

1. The Linux kernel is developed and distributed separately from the rest
of the Linux operating system, like the C library and tools. Because all
core components are distributed and developed separately Linux is more
componentized than other Unix(-like) operating systems, such as Solaris
and FreeBSD, where the core components are developed and released as
a whole.

2. The Nix deployment system has been developed and tested primarily on
Linux, therefore it currently is the most mature platform for developing
NixOS.

1.5 Issues for NixOS

Nix has proven itself as a reliable software deployment system for many “nor-
mal” packages, but it has not been used to install and manage a whole system,
including the kernel and programs that are started during system startup.

1.5.1 Purifying the Nix Packages collection

The Nix Packages collection, a collection of software packages that can be in-
stalled with Nix and which is maintained by the Nix developers, could not be
built on a pure system. A pure system is a system where all software packages
are managed by Nix and where there are no fixed locations on the system.

The scripts that manage making a Nix environment expected certain tools to
already be present in fixed locations, such as /usr/bin/gcc, which is not true
in a pure Nix environment. For NixOS these scripts had to be rewritten.

1.5.2 Linux kernel

The kernel is the software that ultimately drives the computer. It makes sure
processes are scheduled correctly (starting, stopping, etcetera), that programs
can make use of hardware devices, and a lot more. Only one kernel can be
running at any time.

The Linux kernel supports loading kernel modules at runtime. Kernel modules
are small pieces of software that add functionality to the kernel, for example
a device driver for a certain piece of hardware. Many modules are, for vari-
ous reasons, not included in the official Linux kernel. These so called external
kernel modules could still be at an alpha quality level and not stable enough
to be included, or have a license that is incompatible with the license of the
Linux kernel, which makes it legally impossible to distribute them with the
main kernel.
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1.5 Issues for NixOS

External kernel modules have to be rebuilt manually by the user whenever a
new kernel is installed. The package manager will not take care of compiling the
extra kernel modules for a new kernel. With Nix combinations of these external
modules and the kernel can be built and deployed more easily.

The way each separate kernel module is installed differs per module. Some
modules are installed in a separate directory, others are put it in the same
directory as the modules that were installed with the kernel. This approach
conflicts with the way packages are installed in the Nix store, where a package
should not change after it has been installed.

If a module needs to be loaded into the kernel, the tools that load the module
first have to find the right module, for which additional management needs to
be done. The tools that load modules into the kernel expect all modules to be
present in one directory, for example /lib/modules/. If the kernel and modules
are kept in separate directories in the Nix store, they need to be combined for
the tools to work properly.

1.5.3 Services

An important part of any operating system are “services”. A “service” is a
program or set of programs that adds a particular functionality to a system,
such as the “networking service”, or a “web server”. There are many examples
of services on Linux-systems, most of which are started at boot time. Services
are started by the so called “init scripts”. On most conventional Linux systems
these scripts can be found in the /etc/init.d directory.

Many services require a certain order in which they have to be started. For
example, a web server won’t be able to run if the networking service is not
started. Frameworks that do this exist for many Linux distributions. So far,
services deployment using Nix has been done on a ‘one-off’ basis[10]. There is
no generic framework for Nix for deploying services, which takes things like the
order in which services have to be started and stopped in account.

Services are unique from other programs because, unlike “normal” programs:
often one version can run at a time with one particular configuration. For exam-
ple, only one instance of the remote login service (sshd) can be actively listening
on TCP port 22 on a network interface of a machine to accept connections to
that machine. More instances of the remote login service can be active using on
other ports, but for the configuration that uses TCP port 22 only one service
can be active.

There are run time dependencies in a service, which cannot be expressed at
build time, such as “for this service to work, networking needs to be enabled”, or
dependencies which express a more generic service, such as “needs a mailserver”,
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without specifying which implementation is needed. The implementation of
a dependency like “mailserver” doesn’t matter, as long as there is a service
that accepts and sends mail using a certain protocol. Other dependencies are
optional, such as “a logging service would be nice, but the service can still run
just fine if the logging service is not present”.

Another issue with services is that many services keep state configuration files,
which should not be kept inside the Nix store. An example of this is the system
password file, which stores account information of users. If this file is kept inside
the Nix store in several versions, with various programs using different versions
of the password file, it is not known what will happen. Maybe some accounts
will be disabled or not exist in some situations, but perhaps, and even worse, old
logins are reactivated, or two existing accounts may clash. As a rule of thumb,
mutable state should not be kept inside the Nix store.

These restrictions make installing and managing (starting, stopping, restarting),
of a service different from managing other software.

1.5.4 NixOS installer

NixOS would not be complete without an installer. The main task of the in-
staller is preparing the target drive (partitioning, formatting), initializing the
Nix database, registering packages, installing packages, installing and configur-
ing the bootloader, etcetera.

NixOS has to be completely self-contained, so the NixOS installer has to be
built using Nix as well. It is highly desirable to build NixOS on a NixOS system,
without having to rely on another Linux distribution to bootstrap NixOS.

1.5.5 NixOS contributions

The design of NixOS can be split in a few subgoals, that are relatively indepen-
dent of each other:

1. Purify the Nix packages collection so the whole build process is clean.

2. Build and install a bootable Linux kernel using Nix.

3. Make a framework for managing services.

4. Make NixOS installable on real hardware, for example via a CD. The
install image has to be created via Nix itself, so new versions of NixOS
can be made on NixOS itself.
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1.6 Roadmap

This thesis is structured as follows. This chapter discussed deployment systems
for Unix (and Linux in particular) and their characteristics and also described
our solution, the Nix deployment system, as well as a high level description
of the NixOS will be given. Chapter 2 describes how the purification of the
Nix Packages collection was done. Chapter 3 describes how the Linux kernel
is built with Nix and how external kernel modules are built and deployed. In
chapter 4 services will be described. Chapter 5 will briefly touch configuration
management. In chapter 6 the design and implementation of the NixOS installer
will be explained. Chapter 7 presents some results of running and using NixOS
and chapter 8 gives a list of recommendations of how to improve NixOS.
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Chapter 2

Purifying the Nix Packages
collection

2.1 The Nix stdenv

The Nix Packages collection contains a component, called stdenv, that includes
a minimal set of tools and libraries that are necessary to compile C and C++
packages. This stdenv contains tools such as a Bourne (compatible) Unix shell
and Unix tools such as rm and grep, a C/C++ compiler, linker, assembler, and
so on. In the Nix Packages this standard environment is passed to definitions
of packages as a dependency (see figure 2.1).

For other operating systems the standard environment is not as complete as the
environment for Linux.

2.1.1 Creating a pure environment

There are a few ways to realise an environment that is needed by Nix. The
easiest way is to use the tools that are already installed on the host system
(for example /usr/bin/gcc). This used to be the default for the Nix Packages
collection on Linux and is still the default on all other platforms than Linux.

The result is that the environment is built in an “impure” way and Nix does
not always have control over the tools that are used to realize the standard
environment. This is the case if the tools are installed using another package

vim = (import ../applications/editors/vim) {
inherit fetchurl stdenv ncurses;

};

Figure 2.1: Package definition in the Nix Packages collection.
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manager, such as RPM. The packages that the standard environment is built
with by Nix can be changed without Nix noticing it and can lead to environments
that differ, but which are still seen by Nix as the same.

An alternative to using the tools the host system offers is to use tools that are
built with Nix to realize a standard environment. Using Nix ensures purity, but
it leads to a bootstrapping problem: without an environment programs can’t be
built with Nix, without programs built with Nix an environment can’t be built.

To counter this problem there are a few solutions:

1. Install tools with Nix and mimic an “impure” environment.

2. modify the Nix scripts in such a way that programs from the Nix store
can be used.

3. use pre-built tools to build a pure Nix environment.

The first solution could be realized by making links from a well know location
in the filesystem (such as /usr/bin/) to the programs in the Nix store. While
you can do without having the tools that are needed in the well known location
strict dependencies are still not recorded this way. Changing the location in the
Nix store from one program in /usr/bin/ to another version in the Nix store
will not be noticed by Nix, making it as bad as the original situation.

The second solution replaces calls to external programs in the Nix scripts with
calls to the fully qualified path of equivalent programs in the Nix store. The
result is pure, since no programs outside the Nix store are used. However, for
this to work there already needs to be a fully installed Nix environment, so the
bootstrap problem is still present.

Another issue is the potential explosion of the number of possible standard envi-
ronments. If the standard Nix environments in two Nix installations differ they
will also produce different standard environments. Because they are different
they cannot be shared.

The third solution uses pre-built tools and libraries to create a pure standard
environment. These pre-built linked tools are treated as source inputs (not
built by Nix) in the build process. These tools are partly distributed inside the
Nix packages collection and partly downloaded from the Nix website. Because
they are treated by Nix as an input, they are also used in the calculation of
derivations. Changing the inputs will be recorded by Nix and a new

Because the same pre-built tools are used the result (the standard environment)
is the same, which makes sharing easier.

The drawback of the third solution is that it involves some manual work to
compile the tools. For every new platform for which support is added to Nix a
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gcc (static)

glibc (static)

tools (static)

glibc (pure)

gcc (pure)

tools (pure)
stdenvLinux 
(pure)

stdenvLinux
boot1

stdenvLinux
boot2

stdenvLinux
boot3

stdenvInitial

Figure 2.2: The flow of packages in build process of a completely pure environ-
ment using static tools in the Nix packages collection.

new set of pre-built tools has to be made and tested.

With this pre-built environment it is possible to completely bootstrap a new
initial environment inside a pure Nix system like NixOS, eliminate all impure
paths from packages and be completely self-building, whether building on a pure
or impure system.

The third approach is the one taken in the Nix Packages collection. Pre-built
tools are used in various phases to create a completely pure environment. In
every new phase a tool, library or set of pre-built tools is replaced by a newly
built, pure, equivalent, until in the end the whole environment is pure (see
figure 2.2). To make the process easier and more self contained these tools are
statically linked and need no external libraries to run.

The stdenv is built in several stages. First, the pre-built tools are used to
set up an initial environment (stdenvInitial). Using this environment, the
compiler and C library a new environment is created (stdenvLinuxBoot1).
Using the stdenvLinuxBoot1 environment a new C library is built. The C
library in stdenvLinuxBoot1 is replaced with this new C library to create
stdenvLinuxBoot2. With stdenvLinuxBoot2 a new compiler is built, which
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stdenv
linux

scripts

builder-stdenv-initial.sh
download.sh
fix-outpath.sh
unpack-curl.sh
unpack.sh

tools
bash
bunzip2
cp

curl-static.tar.bz2
tar

default.nix
path.nix
pkgs.nix
prehook.sh

Figure 2.3: Directory structure of the buildscripts of the static Linux environ-
ment

replaces the compiler in stdenvLinuxBoot2 to create stdenvLinuxBoot3. With
stdenvLinuxBoot3 all tools that haven’t been rebuilt yet are rebuilt to create
stdenvLinux. This is the final environment with which all other packages in
the Nix Packages collection are built.

2.1.2 Implementation

The static environment as used on NixOS can be found in the subdirectory
stdenv/linux of the Nix packages collection (see figure 2.3). The subdirectory
tools contains four statically linked binaries: bash, for executing all shell scripts
found in the directory scripts, bunzip2 and tar to unpack archives with more
tools and cp to copy files and scripts to other locations. Also present is a
statically linked curl, which is stored in an archive and unpacked before being
used.

4 The allPackages function is a parameter which is passed on from the outside
and which describes the set of packages for which build definitions were defined.
This will be the Nix Packages collection in most situations.

5 The first step is to unpack the tarball containing a statically linked curl.
The curl program is now available to other functions to download files from
the network.

6 7 There are two convenience functions for downloading and unpacking archives.
Using the statically linked tools the downloaded archives are unpacked and de-
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{allPackages}: 4

rec {

curl = derivation { 5

name = "curl";
builder = ./tools/bash;
tar = ./tools/tar;
bunzip2 = ./tools/bunzip2;
cp = ./tools/cp;
curl = ./tools/curl-7.15.1-static.tar.bz2;
system = "i686-linux";
args = [ ./scripts/unpack-curl.sh ];

};

download = {url, md5, pkgname}: derivation { 6

name = baseNameOf (toString url);
system = "i686-linux";
builder = ./tools/bash;
inherit curl url;
args = [ ./scripts/download.sh ];

outputHashAlgo = "md5";
outputHash = md5;

};

downloadAndUnpack = 7

{url, md5, pkgname}:
derivation {
name = pkgname;
system = "i686-linux";
builder = ./tools/bash;
tar = ./tools/tar;
bunzip2 = ./tools/bunzip2;
cp = ./tools/cp;
args = [ ./scripts/unpack.sh ];
tarball = download {inherit url md5 pkgname;};

};
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staticTools = downloadAndUnpack { 8

url =
http://nix/dist/tarballs/stdenv-linux/static-tools.tar.bz2;

pkgname = "static-tools";
md5 = "90578c603079313123e8c754a85e40d7";

};

binutils = downloadAndUnpack { ... } 9

gcc = (downloadAndUnpack { ... } 10

// { langC = true; langCC = false; langF77 = false; };

glibc = downloadAndUnpack { ... } 11

compressed.

8 More statically linked tools are downloaded from a pre-defined location and
unpacked. These tools form the minimal set of tools needed for Nix to, given
a compiler, help bootstrap a new compiler. The tools in the package are
gzip, bzip2, coreutils, make, patch, grep, findutils, tar, sed, gawk and
patchelf.

9 10 11 A compiler toolchain, consisting of a statically linked compiler (gcc),
statically linked tools (assembler, linker, archiver in binutils) and a C library
(glibc) is downloaded. Together with the previously downloaded static tools
this is enough to completely bootstrap a standard environment that is suitable
for Nix to compile programs.

12 The initial environment just contains the downloaded tools and the statically
linked tools that are already present on the system in the Nix Packages collection
(such as bash).

13 There is a function to create a new standard environment. The main pa-
rameters for this function are gcc, binutils and glibc. Initially these are set
to the statically linked tools and are gradually replaced with newly built, pure,
instances.

14 The first real standard environment is created. This environment contains
all the statically linked tools.

15 The collection of packages that can be built with the first standard environ-
ment.

16 Using the statically linked tools a new glibc is built. This instance of glibc
is pure.
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stdenvInitial = let { 12

body = derivation {
name = "stdenv-linux-initial";
system = "i686-linux";
builder = ./tools/bash;
args = ./scripts/builder-stdenv-initial.sh;
inherit staticTools;

} // {
mkDerivation = attrs: derivation

((removeAttrs attrs ["meta"]) // {
builder = ./tools/bash;
args = ["-e" attrs.builder];
stdenv = body;
system = body.system;

});
shell = ./tools/bash;

};
};

stdenvBootFun = 13

{glibc, gcc, binutils, staticGlibc, extraAttrs ? {}}:

import ../generic {
name = "stdenv-linux-boot";
param1 = if staticGlibc then "static" else "dynamic";
preHook = ./prehook.sh;
stdenv = stdenvInitial;
shell = ./tools/bash;
gcc = (import ../../build-support/gcc-wrapper) {
stdenv = stdenvInitial;
nativeTools = false;
nativeGlibc = false;
inherit gcc glibc binutils;

};
initialPath = [
staticTools

];
inherit extraAttrs;

};
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stdenvLinuxBoot1 = stdenvBootFun { 14

inherit glibc gcc binutils;
staticGlibc = true;
extraAttrs = {inherit curl;};

};

stdenvLinuxBoot1Pkgs = allPackages { 15

bootStdenv = stdenvLinuxBoot1;
};

stdenvLinuxGlibc = stdenvLinuxBoot1Pkgs.glibc; 16

stdenvLinuxBoot2 = stdenvBootFun { 17

glibc = stdenvLinuxGlibc;
staticGlibc = false;
inherit gcc binutils;
extraAttrs = {inherit curl;};

};

stdenvLinuxBoot2Pkgs = allPackages { 18

bootStdenv = stdenvLinuxBoot2;
};
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stdenvLinuxBoot3 = stdenvBootFun { 19

glibc = stdenvLinuxGlibc;
staticGlibc = false;
inherit (stdenvLinuxBoot2Pkgs) gcc binutils;
extraAttrs = {inherit curl;};

};

stdenvLinuxBoot3Pkgs = allPackages { 20

bootStdenv = stdenvLinuxBoot3;
};

17 18 A new standard environment is created. The difference with the first
standard environment is that glibc is now pure and dynamically linked.

19 20 A new standard environment is created. The difference with the third
standard environment is that gcc and binutils are now pure and dynamically
linked to the pure glibc from the second standard environment. The static
tools are still used in this standard environment.

21 As a final step all static tools are rebuilt using the pure glibc, binutils
and glibc. The result is a completely pure environment, with which the Nix
Packages collection can be built in a completely pure way.

This mechanism of using statically linked tools to bootstrap a standard environ-
ment has been succesfully used in Nix for many months and has been verified
to work on NixOS and now is part of the standard build procedure of Nix for
Linux.

2.1.3 Building the pre-built tools

Most of the pre-built tools that are used are statically linked using dietlibc,
a C library with a smaller footprint than glibc. For almost all packages the
fact that dietlibc has a smaller footprint than glibc is the only reason that
dietlibc is used. The only exception is curl. To resolve hostnames to IP
addresses glibc dynamically loads an additional library at run time, even if
an application is statically linked with glibc. This is a problem for curl,
which needs to resolve hostnames to download the statically linked tools. If
dietlibc is used instead of glibc this problem does not occur and curl can
resolve hostnames without any problems. Only bash cannot easily be linked
with dietlibc and is statically linked with glibc.

All of the statically linked tools that are used to build the pure Nix environment
are built using Nix. Nix expressions for these tools are available in the standard
Nix Packages collection.
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stdenvLinux = (import ../generic) { 21

name = "stdenv-linux";
preHook = ./prehook.sh;
initialPath = [
((import ../common-path.nix) {pkgs = stdenvLinuxBoot3Pkgs;})
stdenvLinuxBoot3Pkgs.patchelf

];

stdenv = stdenvInitial;

gcc = (import ../../build-support/gcc-wrapper) {
stdenv = stdenvInitial;
nativeTools = false;
nativeGlibc = false;
inherit (stdenvLinuxBoot2Pkgs) gcc binutils;
glibc = stdenvLinuxGlibc;
shell = stdenvLinuxBoot3Pkgs.bash ~ /bin/sh;

};

shell = stdenvLinuxBoot3Pkgs.bash ~ /bin/sh;

extraAttrs = {
curl = stdenvLinuxBoot3Pkgs.realCurl;
inherit (stdenvLinuxBoot2Pkgs) binutils /* gcc */;
inherit (stdenvLinuxBoot3Pkgs)
gzip bzip2 bash coreutils diffutils findutils gawk
gnumake gnused gnutar gnugrep patch patchelf;

};
};

}
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Kernel

In an operating system the kernel is a crucial program. It interacts with the
hardware, manages processes and memory, takes care of networking, and so on.
A kernel provides the necessary basis for computer programs to run on.

There are many different kernels, most of which are shipped as part of an
entire operating system. Exceptions are Linux and GNU/Hurd, where the
kernels[15][16] are distributed separately from the other components of the op-
erating system, such as the C library, shell and other utilities.

Building a Linux kernel – NixOS is based on Linux, so only the Linux kernel is
considered here – with Nix differs slightly from than building other packages with
Nix. The most important reason for this is that the Linux kernel has support
for loadable kernel modules. Kernel modules provide extra functionality, such
as support for a certain type of soundcard, or support for a filesystem, that can
be loaded into the kernel and removed from the kernel at runtime.

Many device drivers are installed in module form and only loaded into the
kernel when the functionality they implement is needed. Kernel modules keep
its memory footprint smaller. Code that resides in a module is only loaded when
it is needed. If it is never needed, it is never loaded into the kernel.

Not all kernel modules are included in the main kernel source. Some are dis-
tributed separately, such as the modules that are needed for proper 3D support
in NVidia and ATi graphics cards. Installing a new kernel also means that these
modules need to be rebuilt and reinstalled in order to work with the new kernel.
In conventional Linux distributions rebuilding and reinstalling these modules is
often a manual process, which is time consuming. With Nix these steps can be
automated. When a new kernel is built, the right external kernel modules will
be automatically built and installed as well.
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3.1 Using Nix for building the kernel

The Linux kernel uses version numbers. External tools to load kernel modules
into the kernel at runtime use the version number to determine if the kernel
module is allowed to be loaded. If the version number of the kernel and the
version that is recorded in the kernel module do not match, it is not allowed to
be loaded into the kernel.

Version numbers are not completely safe though. Two kernels that have a
different, incompatible, configuration can still have the same version number.
Incompatible in this case means that in one kernel certain capabilities were
built in that are not present in the other. An example would be that the new
kernel has support for SCSI, while the old kernel hasn’t, with modules in the
new kernel that need SCSI support to work correctly. Using the version number
alone as a mechanism to see if two kernels are different will not work.

The fact that version numbers are not reliable to distinguish kernels has to be
kept in mind when building, installing and managing the Linux kernel with Nix.

There are several approaches which can be used to build, install and manage
the kernel.

One approach is to create a Nix profile for kernels. The profile is adapted when
another version of the kernel is installed. The kernel compilation process is not
altered in any way, except that the installation directory is a directory in the
Nix store.

This approach does not record the Nix hash in the kernel image, or in the
kernel modules. If two kernels have the same kernel version, but are compiled
in a different way there is no way to tell the kernels apart, at least not for the
external tools that take care of loading and unloading modules.

This is a problem, as the following scenario shows:

1. boot a system with a specific Linux kernel, for example 2.6.11.11

2. build a new kernel with a different and incompatible configuration, but
with the same version number.

3. switch the kernel profile, but do not reboot.

Now there are two kernels with the same version number, but different capabil-
ities. Loading a module into the kernel after updating the profile, but before
rebooting, might fail because the modules of the newer kernel might not be
correctly loaded into the running kernel. The problem here is that two different
versions of the kernel and their modules are mixed, which is not guaranteed to
work at all.

32 Kernel



Using Nix for building the kernel 3.1

Another approach would be to embed the Nix hash into the kernel image. This
can easily be done by adapting the value of EXTRAVERSION inside the kernel
Makefile. The value of EXTRAVERSION will be appended to the kernel version,
which can be displayed with uname -r. This approach is not exotic. Many ven-
dors already adapt this attribute. For example, uname -r reports the following
on a Fedora Core 5 distribution:

$ uname -r
2.6.17-1.2145_FC5smp

Everything after 2.6.17 is defined in the EXTRAVERSION variable in the kernel
buildscripts.

The changes to the build process are relatively easy. The value of EXTRAVERSION
is replaced by the old value of EXTRAVERSION and it is concatenated with the
Nix hash. The kernel is built and installed in the Nix store.

All drawbacks from the first approach are not present in the second approach.
Embedding the hash into the kernel also ensures runtime purity because modules
simply won’t load into a kernel if they were not built for that kernel.

3.1.1 Implementation

The Linux kernel has a relatively self-contained build process and isn’t restricted
to specific locations. With only a very small configuration tweak the kernel can
be built and installed with Nix.

The changes to the build process are minimal. The value of EXTRAVERSION is
replaced by the old value of EXTRAVERSION concatenated with the hash of the
Nix expression for the kernel. Most of the work that is done in the builder for
the Nix expression of the Linux kernel has to do with properly embedding the
Nix hash in the kernel.

22 The kernel configuration is copied to the right location where the kernel
compilation process can find it.

23 The hash part of the name of the Nix store path is extracted and saved,
because it will be reused during building and installing.

24 The EXTRAVERSION variable in the Makefile is replaced with something con-
taining the Nix hash.

25 The location where the modules are usually installed needs to be overridden,
to ensure that the modules are installed in the Nix store instead of in the default
location (/lib/modules).

Kernel 33



3.2 Kernel modules

source $stdenv/setup

buildPhase() {
cp $config .config 22

hashname=$(basename $out)
if echo "$hashname" | grep -q ’^[a-z0-9]{32}-’; then
hashname=$(echo "$hashname" | cut -c -32) 23

fi

extraname=$(grep ^EXTRAVERSION Makefile)
perl -p -i -e "s/^EXTRAVERSION.*/$extraname-$hashname/" \

Makefile 24

echo "export INSTALL_PATH=$out" >> Makefile
export INSTALL_MOD_PATH=$out 25

make
make modules_install

Figure 3.1: A part of the kernel buildscript

To build kernel modules for the kernel at a later time just the configuration and
header files for the kernel are needed, which can be found in the directory build
in the kernel module directory (/lib/modules/$version/build). Normally
this directory is a symbolic link to the kernel build directory. When building
with Nix this is a temporary directory in /tmp, for example /tmp/nix-1234/,
which is created by Nix to compile the software in and removed after the kernel
has been successfully compiled. To ensure kernel modules can be built for the
kernel at a later time, the header files and kernel configuration are copied to the
Nix store to the directory $kernel/lib/modules/$version/build/.

3.2 Kernel modules

Not all kernel modules are shipped with the mainline kernel sources. Some
modules that are shipped separately from the mainline kernel as modules have
not been accepted for inclusion in the mainline kernel for whatever reason.

Sometimes vendors distribute their own kernel modules, which have to be shipped
separately from the mainline kernel for licensing reasons. The modules are
shipped under a restrictive license, which prevents the distribution of these
modules with the mainline kernel source. The best known examples of these
are kernel modules for 3D graphics cards (Nvidia, ATi) and virtual machines
(VMware).

Installation of a new kernel version often forces the administrator of a machine
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to recompile and reinstall the extra kernel drivers. Managing the kernel and all
extra modules with a Nix expression makes it much easier to upgrade a kernel
without needing to recompile and reinstall all extra kernel modules explicitly.

3.2.1 Building modules

Kernel modules can be built in two ways. The first way is during compilation
of the main kernel. During the build of a a default kernel also a lot of kernel
modules are built. These modules are then stored in a subdirectory of the kernel
install directory in the Nix store. The kernel build process in Nix already takes
care of building these modules.

The other way is when kernel modules are built separately, apart from the
main kernel compilation process. Add-on drivers and experimental modules,
hereafter referred to as “external kernel modules” (because they are “external”
to the main kernel sources), are built this way. An increasing number of modules
only need a configured kernel source tree (header files and kernel configuration)
to be built. These files can be found in a subdirectory of where the kernel is
installed, called lib/modules/$VERSION/build, where $VERSION is the version
of the kernel, as reported by the command uname -r. The kernel build and
installation process already makes sure that all the right files are copied to this
directory.

The build process differs per external kernel module. To prevent linking with
the wrong header files from glibc the flag NIX GLIBC FLAGS SET should be set
to 1 in the Nix expression for the kernel module. The glibc library keeps its
own copy of kernel header files and these might possibly not match those of the
kernel the module is compiled for. A kernel module should also be compiled
with the same gcc the kernel is compiled with to prevent loading errors.

3.2.2 Installing modules

When installing external kernel modules a few complications arise. First of all
there is no standard location where external kernel modules should be installed.
Some modules, such as the modules that are needed for VMware, are installed
in a separate directory, like /lib/modules/$version/misc/ (where $version
is again the version of the kernel). Others are installed in the same directory as
previously built modules that were built during the kernel build process itself.
An example of this are the OV511 modules that provide support for webcams
based on the OV51x chipsets. The installation script of the OV511 driver wants
to install the modules with the modules of the existing kernel, which would be
/lib/modules/$version/kernel/drivers/usb/media/ on conventional Linux
distributions.
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With Nix these external modules should be kept in their own directories in
the Nix store, instead of installing them with the kernel they were built for.
Storing these modules in the same directory in the store as the kernel they
were compiled for, would not be pure. Furthermore, a path in the Nix store is
tagged read-only after installation, making installation impossible without first
granting write permission.

The install process often expects that the modules will be installed in a subdi-
rectory of /lib/modules/$version. Since this is not a path in the Nix store
it is changed to $out/lib/modules/$version. Here $out is the same as the
variable $out from the Nix installation process and represents the install loca-
tion in the Nix store. The value of the $out variable is different from $version
which is (again) the version of the kernel the modules were compiled for. The
result is that the install path of the kernel is not littered with external kernel
modules, but remains pure.

3.2.3 Loading modules

Loading and unloading of kernel modules into the Linux kernel is done by
tools in the module-init-tools package. This package contains tools that can
load (insmod) or remove (rmmod) a single module, or load a stack of modules
(modprobe), where a module and all modules that particular module depends
on are loaded in the right dependency order.

Most programs in the module-init-tools package are agnostic of where the
modules are located on disk (insmod can even read from standard input), there
are a few tools in this package that need to know where the modules are stored.

With modprobe a whole stack of modules can be loaded at once using the mod-
ule name. The module name is looked up in configuration files. The first file
where modprobe looks for module names file is modules.dep, which is a file
that is generated by depmod, but a module name can also be defined in a num-
ber of other places, namely modules.alias (also generated by depmod) and
/etc/modprobe.conf, where aliases are defined for kernel modules for easier
loading of kernel modules. This file is often generated by the installer, or by a
hardware detection program, like kudzu.

The file modules.dep is also used to determine the dependencies of a module
recursively, so all the right modules can be loaded with one command invocation.

In the sources for depmod, modprobe and modinfo the constant MODULE DIR is
defined with a default value of /lib/modules/. The tools use this constant to
find the default location where kernel modules are installed. The MODULE DIR
variable can be redefined at compile time. In the Nix Packages collection these
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tools are patched to get this location at runtime from the environment variable
MODULE DIR. If this variable is not set, the value /lib/modules/ is used instead.

The files that modprobe uses to read dependency information from are generated
by depmod. The depmod program looks at information inside modules. Using
this information it determines what other modules are needed by a module.
This dependency information is written to a set of files.

The depmod program expects all modules to be installed in a single directory
and its subdirectories and also writes its own result in this same directory. In
Nix all modules are located in multiple directories in the Nix store and not
stored in one directory such as /lib/modules/$version/.

To circumvent this problem we use a method similar to what GNU stow[19]
uses to manage software installations. The fact that we used the version of the
kernel in the name of the path that the modules were stored now pays off:

1. Create a directory to store kernel modules in (done automatically by Nix
using the $out variable).

2. For every subdirectory in $kernel/lib/modules/$version/ that con-
tains kernel modules make a directory in $out with the same name.

3. For every kernel module that is present in any of the subdirectories of the
installed kernel make a symlink to the kernel module in the Nix store from
$out/lib/modules/$version/.

4. Do the same for every external kernel module.

After this all kernel modules will seem to be in one directory in the Nix store.
The depmod, modprobe and modinfo tools can be run as if it were a normal
system after setting the MODULE DIR environment variable to the right location
in the Nix store.

Implementation

Using a normal Nix expression the combination of kernel and external modules
can be easily managed (see figure 3.2).

The internal directory structure of the modules directories of the kernel and
the external kernel modules is recreated and symlinks to the kernel modules
themselves are made. This is done by the builder script for the Nix expression
(see figure 3.3).

26 The top path for the module directory is in the Nix store. The directories
that are built by this script will be in a direct subdirectory of this path. The
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{stdenv, module_init_tools, kernel, modules}:

stdenv.mkDerivation {
builder = ./builder.sh;
name = "kernelscripts-0.0.1";

inherit module_init_tools kernel modules;
}

Figure 3.2: The Nix expression describing the combination of the Linux kernel
and external modules.

source $stdenv/setup

export MODULE_DIR=$out/lib/modules/ 26

kernelVersion=$(cd $kernel/lib/modules/; ls -d *)
mkdir -p $out/lib/modules/$kernelVersion

cd $kernel
find . -not -path "./lib/modules/$kernelVersion/build*" \

-type d | xargs -n 1 -i% mkdir -p $out/% 27

find . -not -path "./lib/modules/$kernelVersion/build*" \
-a -not -path "./System*" -a -not -path "./vmlinuz*" \
-type f | xargs -n 1 -i% ln -s $kernel/% $out/% 28

for i in $modules; do
cd $i
find . -not -path "./lib/modules/$kernelVersion/build*" \
-type d | xargs -n 1 -i% mkdir -p $out/% 29

find . -not -path "./lib/modules/$kernelVersion/build*" \
-type f | xargs -n 1 -i% ln -s $i/% $out/% 30

done

$module_init_tools/sbin/depmod -ae $kernelVersion 31

Figure 3.3: The builder script that combines kernel and external modules.
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environment variable MODULE DIR is used by depmod to find the right directory
to find the modules to inspect and write its own files to.

27 29 The directory structure is recreated. For every subdirectory in the di-
rectories an equivalent directory is created in the target directory.

28 30 The individual modules are symlinked to the right modules in the store.

31 The depmod command is run to determine and record all the dependencies
for every module, for easier loading by modprobe and other tools.

3.3 Upgrading to a new kernel

The Linux kernel developers tend to add new functionality with every new
kernel release. Because of this old configurations can often not easily be used
for building a newer kernel. The kernel configuration script will ask what to
do with the new features and wait for user input when it is run with an old
configuration. In Nix the kernel buildscript runs in non-interactive mode so the
build process would get stuck. There is currently no solution for this. Upgrading
to another kernel will require making a new configuration by hand.

3.4 Booting the kernel

The first code that is executed on a PC after it is powered on is located in-
side the BIOS chip. This BIOS code does some rudimentary hardware probing
and memory checks and also starts the bootloader program. The bootloader
program has the task to boot an actual kernel and operating system. The PC
standard dictates that the first 512 bytes on a harddisk are reserved for the boot-
loader. This section is called the “Master Boot Record” or MBR. A small part
of the bootloader, often called “first stage” will be installed inside the MBR, or,
alternatively, in the first 512 bytes of a PC partition. Subsequent stages of the
bootloader can be loaded from the harddisk and do the actual work of loading
and booting the kernel and the rest of the operating system.

For Linux on the x86 platform there are two bootloaders that are used for
nearly 100% of all installations. The first one is LILO[17], which has been the
default bootloader for many years, but it is rapidly being replaced by GRUB[18].
GRUB has the advantage that after a configuration change it does not have
to be reinstalled in the MBR of the drive, unlike LILO, but it can read its
configuration from disk. GRUB has built-in support for many of the popular
Linux filesystems and knows how to read this format and read its configuration
file.
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For NixOS we have chosen to use GRUB as a bootloader for the following
reasons:

1. GRUB is rapidly becoming the standard for Linux bootloaders, especially
on the x86 platform.

2. GRUB targets more systems than just Linux on PC. Even though NixOS
only targets Linux on the x86 platform right now, it might target other
platforms in the future as well. Having one bootloader makes installation
and configuration easier.

3.4.1 Bootloader configuration

If GRUB is used the kernel can be booted directly from the Nix store, as long
as the filesystem that contians the Nix store is supported by GRUB. If this is
not the case, then the main kernel image should first be copied to a part of the
disk that GRUB can read and boot from.

Regardless of which bootloader is chosen, the bootloader itself cannot reside
inside the Nix store, but has to be installed on the first 512 bytes of the disk.
However, the tools that install the bootloader on the disk and the data that is
installed, can safely be kept in the Nix store.

3.4.2 Initial ramdisk

A so called “initial ramdisk” is often used at boot time in many distributions. An
initial ramdisk is used to perform some system setup before the root filesystem is
mounted. An example is loading kernel modules for specific hardware support,
for example to be able to mount the root filesystem that is on a filesystem for
which there is no direct support in the kernel image, but for which there is a
loadable module or to load exotic device drivers that are needed for just one
device on a particular machine.

An example of initial ramdisk usage can be found in the Fedora Core Linux
distribution, where, starting with version 3, the root filesystem is on a partition
which is managed by Logical Volume Management (LVM), which is a method
to let multiple disk partitions appear as one. Inside the kernel there is no direct
support for LVM, but there is a module which adds LVM support to the kernel.
When the initial ramdisk is loaded by the kernel the scripts inside the initial
ramdisk will load the module for LVM support and the root filesystem can be
mounted.

An initial ramdisk is often used to keep the kernel smaller and keep machine
specific hardware support in modules. This is done to prevent building a mono-
lithic kernel with support for hardware that is not present in the target system.
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Distributors can keep their kernels small, but can still support a wide range of
hardware. During installation of a new kernel on a machine typically a script is
run which determines what modules need to be inside the initial ramdisk and
an initial ramdisk is created with the right modules. The script looks at what
hardware is in the machine and what filesystems are used. An initial ramdisk
specifically for that configuration is then created.

As the initial ramdisk changes on a per machine basis, it can therefore not be
easily shared between machines or configurations, unless the machines have the
same hardware. It is maybe not advisable to keep the initial ramdisk inside
the Nix store, but the scripts that generate an initial ramdisk, given a system
configuration, can easily be managed and built with Nix.

NixOS currently has no support for building and installing an initial ramdisk.

3.5 Tracking sources in the Linux kernel

As seen above Nix a kernel built with Nix is a lot stricter about which modules
can be loaded into a running kernel because the Nix hash is embedded in the
version number. The tools that load modules into a kernel use this version
number to determine if the module can be loaded. An added feature is that
Nix, because Nix also tracks all buildtime dependencies, can also help to better
track down kernel errors.

Errors in the Linux kernel can obviously have a severe impact on system stability.
Unlike programming errors in other programs, which only effect a small subset
of programs, a programming error in the kernel can lead to computer crashes.
Kernel errors are inherently hard to debug.

Building a working Linux kernel involves many components. Not just the various
source files (C source files, C header files, platform specific assembler), but also
the tools used to compile the sources into a working binary image, such as
the compiler, assembler and linker, influence the build. There are numerous
reported cases where these tools generate code that prevents the kernel from
working correctly, especially on architectures that are not widely spread, such
as the sparc64 platform. For a long time the default Linux kernel compiler
has been gcc 2.95, which is unable to generate correct code for the sparc64
architecture. Kernels built with this compiler will simply fail to boot.

With Nix all sources and tools that are used during the build are tracked, giving
a precise dependency tree. The need to be able to track which source files are
used during the build of the kernel has also been acknowledged by the Linux
kernel developers and they have developed a mechanism to track which C files
are used. While the mechanism that is implemented is at least better than
having nothing, it is not as powerful as Nix which tracks all dependencies that
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are used in a build, including configuration options, compiler and linker tools,
and so on.

The mechanism developed by the kernel developers takes the C input files that
are needed to build a particular kernel module and computes a checksum based
on these sources. This checksum is calculated with the MD4 hashing algorithm
and embedded into the binary image of the module. In the module the checksum
is called srcversion and can be retrieved easily from the module by using the
strings command on a kernel module:

$ strings ext3.ko | grep srcversion
srcversion=FF0DC8177E8E88CF33E6B42

There are a few weaknesses in this approach. The first weakness is that the
mechanism is limited to just modules and does not apply to the main kernel
binary image. So while this mechanism can help with debugging modules it will
not help if a bug is in the main kernel binary.

Another weakness is that this mechanism is not enforced. It is an optional
feature which has to be explicitely configured at kernel build time.

Furthermore, it doesn’t take into account other components that are used that
influence the build process, such as the compiler that is used to build the kernel.
Problems that might occur as a result of a malfunctioning toolchain and not as
a result of a programming error in the kernel code itself will not be easier to
catch with this mechanism.

Configuration options needed to make choices during compile time, for example
symbol definitions used in #ifdef constructions, are also not used to compute
the hash.

This is shown by doing two compiles of a stock 2.6.11.11 kernel, with slightly
different configuration options. One kernel is compiled with the “JBD (ext3)
debugging support” option, the other is compiled without this option. Both
times the modules are built in the exact same environment (a vanilla Fedora
Core 3 installation).

The resulting kernel module without debugging support is compiled has the
following srcversion:

$ ls -l ext3.ko
-rw-r--r-- 1 root root 1392174 Jun 8 16:37 ext3.ko
-bash-3.00$ strings ext3.ko | grep srcversion
srcversion=FF0DC8177E8E88CF33E6B42

If debugging support is included the result is:

-bash-3.00$ ls -l ext3.ko
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-rw-r--r-- 1 root root 1401683 Jun 8 17:19 ext3.ko
-bash-3.00$ strings ext3.ko | grep srcversion
srcversion=FF0DC8177E8E88CF33E6B42

As can be seen the two kernel modules have a different size and different func-
tionality. The srcversion attribute is nevertheless the same in both cases, so
there is no way to distinguish the two modules by using only the srcversion
attribute.

Building the kernel with Nix has the same benefits that this mechanism offers
for free, but without the defects, and will also track all other components that
were used in the build.
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Chapter 4

System services

A crucial part of any Linux system are so called services. A service is a piece of
functionality, that allows the system to perform a specific task. Services can be
very concrete, such as a web server or FTP server, or be a bit vaguer, such as
the “networking service”.

Services are implemented by a program or script or a set of programs or scripts.
On a regular Linux system a lot of important services are started at boot time:
usually the network is brought up and various programs are launched, such
as syslogd for logging, a firewall for keeping unwanted network traffic out or
sshd for allowing remote logins into the machine. When the system is running,
services can be stopped or restarted, or additional services can be started on
the system. Services are probably the most important pieces of software on the
system from a functionality point of view.

A service can have a dependency on other services before it can do its work. For
example, the remote login service (sshd) won’t work if the networking service
is not started first. These dependencies are also often very loose. Many services
that need a mail server to be running actually don’t even care which mail server
is running, as long as it is running and is accepting mail.

Services can also have special requirements on system resources, like TCP/IP
ports, or certain devices or files. These system resources typically cannot be
shared. Only one service can use a certain port. For example, only one web
server can use TCP port 80.

This makes managing services different from installing and managing other pro-
grams.
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4.1 Services on Linux

There are several ways to manage services on Linux and two approaches are in
common use. The first is to start everything from one big script at boot time.
This method is borrowed from the BSD Unix systems. The second method is
to have a script for starting and stoppping per service. The scripts are run
in a certain order to ensure that service run time dependencies are met. This
method comes from the System V Unix systems. Historically the BSD method
was used on Linux, but these days the majority of Linux systems use the System
V method, often referred to as “System V runlevels”. In this thesis only the
System V method is looked at.

4.1.1 System V runlevels

Most Linux distributions use so called “runlevels” which come from System V
Unix. A runlevel is a set of programs or services which are started and stopped
together when that level is entered. Most distributions give the same meaning
to runlevels. For example, “runlevel 3” often means “fully networked multi-
user system with NFS enabled, no graphics”, while “runlevel 5” means “fully
networked multi-user system with NFS and graphics system enabled. When
a runlevel is entered its startscripts are run, and when a runlevel is left its
stopscripts are run.

During the startup of a Linux system the first program that the kernel normally
runs, is init1. The init program launches other programs on startup, by
interpreting a file called inittab, normally located in the directory /etc, which
describes what programs should be started during boot time (see figure 4.1).

Every line in the configuration file describes what action should be performed
in which runlevel. The line starts with an identifier, followed by a collection of
runlevels (or all), followed by the action that should be taken. The last field
describes the command (including parameters) which should be run.

32 The default runlevel is set to a runlevel that should be entered after system
boot. Runlevel 5 is typical for graphical fully networked desktop machines.

33 The runlevel scripts are run with the right runlevel parameter.

34 Various signals can be trapped.

35 Logins on virtual consoles are started.

A few programs are started directly, like the programs to manage virtual consoles
and serial logins (mgetty, agetty or in mingetty), or graphical logins (xdm, gdm

1Even though other programs could be run as the first program as well.
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id:5:initdefault: 32

si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0 33

l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

ca::ctrlaltdel:/sbin/shutdown -t3 -r now 34

1:2345:respawn:/sbin/mingetty tty1 35

2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Figure 4.1: An example System V inittab configuration
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rc.d
init.d

sshd
rc0.d

K25sshd
rc1.d

K25sshd
rc2.d

S55sshd
rc3.d

S55sshd
rc4.d

S55sshd
rc5.d

S55sshd
rc6.d

K25sshd

Figure 4.2: Directory structure of System V runlevels

or kdm). These programs are not considered services, because no scripts to start
and stop these programs are used, but init handles these programs directly.
Services on the other hand are often started by a generic script.33

These scripts, located in /etc/rc.d/init.d/, are executed in a certain order.
This is done because some services need other services to be running to work
correctly. For example, networking should be started before starting a web-
server, otherwise the webserver simply won’t run. A runlevel is constructed by
making symbolic links from the directory for the runlevel (often a directory in
/etc/rc.d/). Only for the services that are part of the runlevel symbolic links
are made. For every service two symbolic links can be made: one for starting the
service and one for stopping the service. The symbolic links for starting start
with “S”, followed by a number, the symbolic links for stopping the services
start with “K”, followed by a number. The scripts are executed with either the
“start” or “stop” argument, and in lexical order.

Runlevels give an adminstrator a uniform interface to starting and stopping
services, and the possibility to choose which services will be started together
during boot time.

The scripts can also be executed later on to start additional services, or to stop
or restart an already running service.
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4.2 Dependencies in services

There are several types of dependencies in services. The first type is a buildtime
dependency. This dependency is used during the buildprocess. This dependency
can be often be easily expressed in Nix by using “buildInputs” in the Nix ex-
pression.

The second type is a run time dependency. An example of this is when a program
executes another program during execution of the program, which is common
in shell scripts. These run time dependencies can also be dealt with easily in
Nix, by replacing invocations of programs in shell scripts with the fully qualified
path to those programs in the Nix store.

The third type is also a run time dependency, but it is a lot looser. It occurs
when programs communicate through some interface, such as a pipe, port or
Unix socket, without actually knowing (or needing to know) what program is
on the other side of that interface. The whole communication is based upon a
protocol that both sides understand. One program needs another program to
just implement a certain protocol and act accordingly. In this thesis this type
of dependency will be called “remote dependency”. This does not mean that
the dependency has to run on another machine, but that it communicates with
the dependency through an interface.

An example of a remote dependency is syslog, which is the system logger on
Linux. It is used by many programs, but these programs don’t run syslog
directly. Instead they use the function openlog from the system C library to
communicate with syslog and log messages. This function in turn uses the
socket /dev/log for communicating with syslog. Basically any program that
can process entries from /dev/log would fullfill the dependency on syslog. For
Linux there are various implementations that offer syslog functionality, namely
sysklogd and syslog-ng. Replacing one implementation with another does not
make any difference for programs that depend on syslog. This dependency is
a lot harder, if not impossible, to express directly in Nix.

If we would express remote dependencies in Nix the situation could occur that
one service depends on one implementation of a server and another service
depends on another implementation. These different implementations cannot
run at the same time, because they would want to use the same resources such
as TCP/IP ports, or sockets.

Apart from the various types of dependencies there is the additional complica-
tion that it is not mandatory that the dependencies themselves are running, but
are optional. For example, many services want to log to the system logger, but
it is not fatal for these programs if the logging service is not available. In other
cases a dependency is mandatory, such as for a networked service (webserver)
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which cannot run if the network is not enabled.

The type of dependency that is not mandatory is from now on called “soft
dependency”, while the dependency that is mandatory is called “hard depen-
dency”.

4.3 Services with Nix

For NixOS a uniform interface to control services, similar to System V runlevels
on other Linux distributions was created.

The main design decisions were:

1. It should be possible to start services at boot time, but also to start or
stop services when the system is already up and running.

2. It should be possible to switch from one implementation of a service to
another, for example switch from the Sendmail mailserver to the Postfix
mailserver.

3. Remote dependencies should be taken care of.

4. Launching a service should launch all services it depends on, if these are
not already running.

4.3.1 Installing a service

To make managing packages easier an extra attribute called “nicename” is used.
The “nicename” is a name by which the service is known to other programs.
This name is more generic than the actual name of the program. It is an ab-
straction over the functionality it provides. For example, the wuftdp FTP server
will have a “nicename” ftpserver, because it provides FTP server funcionality.
Similarly the vsftpd FTP server will also have the nicename ftpserver. In-
stead of specifying the name of the package as the dependency, the ‘nicename”
attribute (for example ftpserver) is used to specify the dependency. A pack-
age that needs to have a FTP server running uses the dependency ftpserver
and not wuftpd. This mechanism makes it easier to switch between different
implementations of services.

Other examples of these nicenames are mailserver for a mailserver, such as
sendmail, postfix and exim. The sysklog and syslog-ng system loggers use
the “nicename” syslog, and so on.

Nix profiles can be used to manage services and their configuration. Using
profiles has the benefit that rollbacks can be used for services. Reverting back
to an old service becomes a lot easier than on conventional Linux systems, where
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often services are not touched unless absolutely necessary, if they are touched
at all (“if it ain’t broke don’t fix it”).

With Nix an upgrade is a lot less troublesome, because you can do rollbacks very
easily. During an upgrade the service has to be stopped, the profile is changed
to a new version and the new service is started. If it doesn’t work you simply
do a rollback and relaunch the old version of the service.

There are various ways to keep scripts in profiles. The most straightforward
way is to keep the control scripts for a service in a profile of which the name
matches a so called “nicename”. This way it is possible to upgrade or roll back
on a per service basis but with all the separate profiles you can’t revert a whole
set of services at one time easily.

4.3.2 Starting a service

Before a script can be started, it checks whether its dependencies are already
running. If not, it tries to start its dependencies recursively. If the dependency
is not already installed on the system it is built and installed in a profile, for ex-
ample in /etc/rc.d/$nicename/, where $nicename is the “nicename” attribute
of the service (so mailserver).

Dependencies of a service are started by first querying the system to see if the
dependency is already running. Currently this is done by asking the start/stop
script of the dependency for its “nicename” and checking if this name is regis-
tered in a central directory where services keep their run time information, for
example in /var/run/nix-services/. The Nix store would not be the right
place to keep this information, since this is state information which is changing
frequently during run time. The Nix store is regarded as stateless.

If the name of the dependency is present in the central directory, it is assumed
that the dependency is already running. If the dependency is not yet running
it is started.

If the dependency is a “soft dependency” any start up failures of the dependency
will be silently ignored. If the dependency is a “hard dependency” and it fails
to start, the start/stop script of the calling service will exit.

If all hard dependencies for the service are started correctly the service itself
can be started using by the start script. If the service itself was also started suc-
cessfully it registers itself with the system as “running” in the central directory
with run time information.
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4.3.3 Stopping a service

When a service is stopped, or removed from the system, the only thing that is
needed is simply invoking the stop script of the currently running service. The
service will stop and deregister itself from the system. Stopping a service will
not stop the dependencies that are needed by or were started by the service.
Even though it is possible to determine which services are not currently needed
by services (this could be done by recursively checking if the dependencies are
needed by other, running, services) this is no guarantee that the other services
are not needed anymore. Other programs which are not managed by the services
mechanism might still be using one of the dependencies. For example, there are
a lot of networked applications (webbrowser, FTP program, newsreader) that
need the “network service” to be enabled, but which are not started from a
start/stop script. Stopping the “network service” because no other service that
is running needs it, will break these other programs.

4.3.4 Anatomy of a start/stop script

The start/stop scripts can be made as fancy as you want. For NixOS a sam-
ple implementation was implemented which is minimal, but functional. All
start/stop scripts are generated using Nix.

A start/stop script for a particular service can easily by generated using Nix.
A script typically has the following dependencies:

• The service itself.

• A set of generic scripts that implements functionality such as registering
and deregistering the service with the system and launching all dependen-
cies recursively. Figures 4.5, 4.6, 4.7 and 4.8 give a walkthrough of the
sample implementation from NixOS. The full versions can be found in the
Nix Packages collection in the directory
servers/server-scripts/generic.

• A script that implements service specific behaviour. In figures 4.9, 4.10
and 4.11 a walkthrough of the service scripts of ssh is given. The orig-
inal scripts can be found in the Nix Packages collection in the directory
servers/ssh-script.

• Other run time dependencies.

36 A set of generic scripts is passed as a parameter. These scripts implement
various functions that all scripts use.

37 38 All “soft” dependencies are specified separately from the normal hard
dependencies.
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{stdenv, ssh, bash, coreutils
, initscripts 36

, key ? null, syslog ? null
, networking}:

stdenv.mkDerivation {
name = "ssh-script-0.0.1";
nicename = "sshd";
server = "ssh";
builder = ./builder.sh ;
softdeps = [syslog]; 37

deps = [networking]; 38

inherit bash ssh initscripts coreutils;
script = [./sshd];

}

Figure 4.3: A Nix expression to generate a start/stop script for sshd.

source $stdenv/setup

ensureDir $out

sed -e "s^@bash^$bash^g" \ 39

-e "s^@sshd^$ssh^g" \
-e "s^@initscripts^$initscripts^g" \
-e "s^@coreutils^$coreutils^g" \
-e "s^@softdeps^$softdeps^g" \
-e "s^@deps^$deps^g" \
< $script > $out/control

chmod +x $out/control

Figure 4.4: Nix builder to generate a start/stop script for sshd.
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#! @bash@/bin/sh -e

STATEDIR=/var/run/nix-services 40

RCDIR=/etc/rc.d/ 41

Figure 4.5: A generic script for services (part 1)

39 The builder generates a script called control. In this script all calls to
programs are replaced by the absolute paths to these programs in the Nix store.

Generic service scripts

The control script is written in such a way it can be invoked with the usual
stop/start/status arguments. It is up to the start/stop script to hide the specifics
of the different programs, such as commandline options.

40 A central directory where scripts keep state information is needed. This
script is either created during install time, or created by a top level script if it
doesn’t exist yet. Here it is just expected to exist.

41 All profiles are kept in one global directory. Every directory in this directory
contains a profile which is managed by Nix.

42 46 If a profile does not exist it is created first.

44 If a hard dependency fails the script exits.

47 If starting a soft dependency fails it is silently ignored.

48 50 The service specific functions from the server specific script are called.
These functions implement the functionality that cannot be shared between all
the scripts.

49 No action is needed if the service is not running and has not registered with
the system.

53 A convenience function to return the name of the service. This is not the
name of the concrete instance of the service, but the same as the “nicename” of
the server.

Service specific scripts

54 A function that implements the service specific details with regard to starting
the service, such as supplying configuration files, and so on.

55 A function that takes care of the service specific details regarding stopping
the service, such as cleanups, cleaning caches (if any), and so on.
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start_deps() {
for i in $deps; do

name=‘$i/control name‘

if ! test -a "$RCDIR/$name"; then
@nix@/bin/nix-env -p $RCDIR/$name -i $i 42

fi

$i/control start 43

RETVAL=$?
if test $RETVAL != 0; then 44

exit $RETVAL
fi

done
}

start_softdeps() {
for i in $softdeps; do

name=‘$i/control name‘ 45

if ! test -a "$RCDIR/$name"; then
@nix@/bin/nix-env -p $RCDIR/$name -i $i 46

fi

$i/control start
RETVAL=$?

if test $RETVAL != 0; then 47

continue
fi

done
}

Figure 4.6: A generic script for services (part 2)
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start() {
if test -a $STATEDIR/$prog; then

exit 0
fi

start_deps

RETVAL=$?

if test $RETVAL != 0; then
echo $prog failed
exit $RETVAL

fi

start_softdeps
startService 48

RETVAL=$?

if test $RETVAL != 0; then
echo $prog failed

exit $RETVAL
fi

register
}

stop() {
echo "stopping $prog"
if ! test -a $STATEDIR/$prog; then 49

exit 0
fi
stopService 50

echo "unregistering"
unregister

}

Figure 4.7: A generic script for services (part 3)
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register() { 51

touch $STATEDIR/$prog
}

unregister() { 52

rm $STATEDIR/$prog
}

status() {
if test -a $STATEDIR/$prog; then

echo "running"
else

echo "stopped"
fi

}

name() { 53

echo $prog
}

Figure 4.8: A generic script for services (part 4)

#!@bash@/bin/bash

source @initscripts@/functions

RETVAL=0
prog="sshd"
softdeps="@softdeps@"
deps="@deps@"

KEYGEN=@sshd@/bin/ssh-keygen
SSHD=@sshd@/sbin/sshd
DSA_KEY=/etc/ssh/ssh_host_dsa_key
PID_FILE=/var/run/sshd.pid
OPTIONS="-h $DSA_KEY

do_keygen() {
...

}

Figure 4.9: A service specific script for sshd (part 1)
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startService() { 54

# Create keys if necessary
do_keygen

echo -n $"Starting $prog:"
$SSHD $OPTIONS
RETVAL=$?
[ "$RETVAL" = 0 ] && @coreutils@/bin/touch \

/var/lock/subsys/sshd
}

stopService() { 55

echo -n $"Stopping $prog:"
@coreutils@/bin/kill ‘@coreutils@/bin/cat \
/var/run/sshd.pid‘

RETVAL=$?
[ "$RETVAL" = 0 ] && @coreutils@/bin/rm -f \

/var/lock/subsys/sshd
}

Figure 4.10: A service specific script for sshd (part 2)

56 57 58 59 Various calls are forwarded to the generic script.

4.3.5 Switching services

The start/stop scripts presented here don’t have any mechanism to switch be-
tween different services (either a different version, or a completely newer ver-
sion). Services should therefore be managed by a toplevel script which first
stops the old service, builds the start/stop scripts for the new service if neces-
sary, updates the profile to the new service and then starts the new service.

4.3.6 Improvements

The scripts presented here are “hackish” and can be improved quite a bit. The
fact that inside the scripts Nix commands are executed is quite dubious. As a
proof of concept these scripts work, but they are not recommended for produc-
tion use.
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case "$1" in
start) 56

start
;;

stop)
stop 57

;;
restart)

stop
start
;;

status) 58

status
;;

name) 59

name
;;

*)
echo $"Usage: $0 start|stop|restart|status|name"
RETVAL=1

esac
exit $RETVAL

Figure 4.11: A service specific script for sshd (part 3)
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Chapter 5

Special configurations

Many programs on Linux systems use configuration information, which defines
how a program should run. This configuration information is commonly found
in a file or directory in a system wide configuration directory, often /etc. As an
example, the configuration for the sshd service can be found here, or the central
password file, or file system configuration. The type of configuration can vary
greatly between packages.

While most configuration information is just part of one package, there are
packages where the configuration is not part of one package, but it is spread
over more packages. The various programs the configuration is part of often
use some sort of plug-in mechanism, where programs can add configuration
information in one common directory, which the main program can read.

When these packages are all installed in the same prefix, as on conventional
Linux systems, the configuration information ends up in the same place. With
Nix this information will be scattered over the Nix store. To make the programs
work correctly with all configuration in different places extra work has to be
done. Configurations from the various packages have to be combined, similar to
combining kernel modules from an installed kernel with external kernel modules.

One example that uses configurations in multiple packages is the Linux hotplug-
ging system. A hotplugging system gives users the possibility to add hardware
dynamically to the running system through hardware buses like USB, IEEE
1394 (FireWire) or hot-swappable PCI. Adding hardware to a running system
makes it mandatory that the operating system can load and unload drivers,
make new device nodes, set permissions on the device nodes and so on.

The default Linux hotplug code is organised in such a way that programs can
add configuration for various devices themselves. Programs like sane, for us-
ing scanners, or gphoto2 for communicating with digital cameras, come with
hotplug configuration for new scanners and cameras.
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The Linux hotplug tools expect most configuration to reside in a single con-
figuration directory. Like with the kernel modules described elsewhere in this
thesis this is a problem. Once a program has been installed in the store other
programs should not touch the installed files.

One tool that make Linux hotplugging work is udev, a daemon that creates
and modifies /etc, the directory with device nodes (files representing hardware
devices). This daemon is commonly started by the init program at system
startup. The configuration for udev is located in /etc/udev/. Other programs
normally add configuration for udev by writing their configuration during install
in this directory.

Another program that is used in the Linux hotplugging system is haldaemon, a
program that is part of the Hardware Abstraction Layer system for Linux.

The haldaemon is a normal service (normally started from System V initscripts),
like sshd or sendmail, but with the added complication of the configuration that
is spread over the Nix store.

The solution for this problem is to make a wrapper package around the main
program (for example udev and hal). All packages which configuration is needed
are passed as a dependency to the Nix expression for this package. The wrapper
package with all configuration is passed as a dependency to another wrapper
package, which consists of the configuration package and the original program.
The wrapper makes sure that the correct configuration will be loaded by the
program.
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Chapter 6

NixOS Installer

An important subgoal of this project is to be able to install NixOS on real
hardware to prove NixOS works as a standalone distribution and that no other
distribution is needed to be able to use Nix.

6.1 Linux installers

Linux distributions are installed on a computer using an installer. The task of
the installer is not simply to transfer packages from one medium (the installation
CD) to another (the harddisk), but also to perform various configuration tasks,
like partitioning and formatting of harddisks, adapting configuration files with
hardware specific information (for example for the graphical environment), and
so on.

Depending on the distribution this installer can be very minimalistic, or very
feature rich. Some installers have completely automated the install process, can
determine a lot of configuration options by themselves and require very little
user interaction. Well known installers in this category are anaconda (Red Hat,
Fedora Core and derivates) and YaST (SUSE LINUX). Other installers, like the
Gentoo installer, are not more than a shell prompt and a set of shell commands
that have to be entered in the right order by the administrator.

6.2 NixOS installer implementation

NixOS can only be installed from a CD. A small bootloader on the CD loads a
Linux kernel. This Linux kernel starts the installation program. The installation
program and related tools are located inside an initial ramdisk. This ramdisk
is unpacked to memory by the kernel and the init program inside the ramdisk
is started as the first process.
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6.2 NixOS installer implementation

The initial ramdisk contains a minimal Nix store but no Nix database. There
are just enough tools inside the installer to set up a suitable environment to do
the real install. Included are bash, coreutils and util-linux and all their run
time dependencies. The paths to these tools are set in the PATH environment
variable for the first installer scripts. On a normal system the PATH variable
would translate to a user’s Nix profile. Using Nix profiles inside the installer
would not make much sense. Only one specific instance of the tools is present on
the installer CD and none of the tools used by the installer during installation
need to be upgraded during the install itself.

Before the actual installation is done a suitable environment is set up. To make
this environment the following things are done:

• Making device nodes, such as device nodes for the harddisk and its par-
titions, various tty character devices for extra installtime “rescue shells”
and other special devices such as /dev/null. Other device nodes will be
created dynamically later on.

• Mounting special filesystems which are used in Linux: /proc, /sys and
/dev/pts

• Discovering and mounting the installation CD, which contains all the pack-
ages we want to install and setting links to it accordingly.

• Launching the script that does that actual installation of the packages
onto the target drive.

The ‘real’ installer has the following tasks:

1. partitioning of disks

2. formatting of partitions

3. initializing the Nix store and Nix database on the target drive

4. installing Nix packages from the CD onto the target drive

5. setting up an initial environment

6. installing the bootloader

Not all of the steps are implemented by the current NixOS installer. Partitioning
of disks is not performed. The NixOS installer simply expects two partitions to
be present, one which is used to store data, the other to use as a swap partition.
A full installer would make this configurable.

The partitions of the disks are formatted for a certain filesystem. Various filesys-
tems are available for Linux, but the NixOS installer only uses the ext2 filesys-
tem. A full installer would have support for other filesystems as well and format
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these accordingly.

Before the packages are installed a Nix store and database are created on the
target drive. Packages are installed by copying over a minimal set of packages
from the Nix store on the CD and registering the paths as valid in the database
on the target drive. Otber packages on the CD are installed using Nix manifests.
Nix manifests are a way to tell Nix where pre-built packages can be downloaded
or copied from to be installed. Nix manifests work by registering the packages
into the Nix database first. After registration the packages can be installed
using the normal Nix installation tools.

The last step is installation of the bootloader and the bootloader configuration.
As bootloader grub is used. The bootloader is configured to boot the kernel di-
rectly from the Nix store on the harddisk. This is only possible if the bootloader
can read the filesystem the Nix store is stored on on the harddisk.

6.3 Installation CD

The NixOS installer CD uses syslinux. The syslinux tool is a small bootloader
specifically meant for booting Linux-based systems from harddisk, CD or over a
network via PXE. For NixOS we use isolinux, which is meant for CD installers
and which is part of syslinux. It is the de facto standard for bootloaders for
Linux installation CDs for the x86 platform. The isolinux program has a few
limitations which have an impact on how to prepare the installation CD.

One limitation of isolinux that conflicts with Nix is that it can use file names
and directory names up to 31 characters. This makes it impossible to boot the
kernel directly from a Nix store on the installation CD. The character limit is a
limit of the underlying ISO 9660 filesystem.

The task of isolinux is to boot the Linux kernel with the right parameters,
such as the initial ramdisk which is used during the installation.

6.4 Generating the installer and CD image

The installer scripts and bootable CD image are generated by a shell script. In
this build script packages are taken from the Nix store – and built first if the
packages are not already present in the Nix store – and copied to a temporary
location. This temporary location will eventually be the root directory inside
the ISO 9660 filesystem that is created for the installer CD.

Inside this root filesystem are the initial ramdisk and a Nix store (but again,
no Nix database) with packages that the full compiler will use. In this store
there are more packages than in the Nix store that is inside the initial ramdisk.
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This Nix store is mounted over the Nix store from the initial ramdisk. Inside
the root filesystem there is also isolinux and its configuration and the Linux
kernel that isolinux boots. Also present are the installer scripts and a copy of
a statically linked bash.

For the packages that are used in the installer a “binary only” deployment is
done. That is, only the run time dependencies and not the build time depen-
dencies are put in the Nix closure. This is done to save space in the installer
and keep the install CD under the size limit of a standard CD-ROM.

Paths to executables in the installer scripts are replaced by the full path to that
executable in the Nix store in either the initial ramdisk or on the CD.

The initial ramdisk contains, apart from the Nix store, also a directory with
special device nodes and empty directories which will serve as mount points for
special filesystems such as sysfs, procfs and so on.

As a final step everything is packed into a bootable ISO 9660 image, which can
be burned to a CD and booted. This image is not kept in the Nix store, due
the massive size (over 400 megabyte).

The NixOS build scripts have three external dependencies: bash (to execute the
scripts), nix and which (to determine the path to the Nix tools). For the rest
all necessary tools come from the Nix store and are built first if necessary.

6.5 Installations NixOS using only Nix manifests

In an ideal situation the installation would be done in a cleaner way than it is
done now, by using only Nix manifests. If only Nix manifests are used in the
Nix installer it eliminates the need to explicitely register the copied packages as
valid, as is done now.

The difficulty is that during installation time the Nix store in /nix is not the
Nix store on disk that packages should be installed into, but the Nix store in
the ramdisk of the installer. The Nix store for the target system is on the
mounted disk in the ramdisk, and can be found for example in the directory
/tmp/mnt/nix/.

If a package is installed in the Nix store in the temporary location, the temporary
location (in /tmp/mnt/nix/ and not the final location (in /nix/ will be recorded
into the Nix database.

When the environment variable NIX ROOT is set Nix will perform the chroot
system call. This system call uses the value of NIX ROOT and makes this the
new / directory for all commands that are executed by Nix. This ensures that
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packages are registered in the Nix database with the right path and not with
the path to the temporary path in the installer.

In theory this should work, but practice is harder. When a package is registered
into the store from a Nix manifest using nix-pull, an entry is made into the
Nix database that notes that the program has to be downloaded from a cache.
When the program is installed, for example wit nix-env, a helper program,
download-using-manifests.pl is started. This is small Perl script expects to
find perl and several utilities from nix in the store to execute them. When
these packages are not yet installed dowload-using-manifests.pl will fail to
run. This is a bug in Nix (bug NIX-50 in the Nix bug tracking system).
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Chapter 7

Building packages and running
programs on NixOS

7.1 Building packages on NixOS

After NixOS is installed and the network is enabled on it it can be used to
build packages. Since NixOS is a completely pure environment it is impossible
that build scripts will find anything in fixed paths like /bin, /usr/bin and
/usr/local/bin and accidentily pick this up as an unidentified dependency.

A build on NixOS will reveal these dependencies, either because the package
will fail to build or because the result of the build is different than on a normal
Linux machine.

One example of a package which builds cleanly in Nix on a machine with a reg-
ular Linux distribution (Fedora Core 3), but not in NixOS is the OpenOffice.org
office suite. During the build it fails when at some point xargs is executed.

On Linux xargs defaults to using /bin/echo if no specific command is given.
The Single Unix Specification merely states that echo should be executed, but
does not specify where this tool has to be installed [9]. Because no default
command is given, xargs tries to execute /bin/echo, which is not present on
NixOS and thus the build fails. On a normal Fedora Core 3 installation this
tool is present and the build works.

7.2 Running programs on NixOS

Running programs on NixOS is usually not a problem, since the locations of
many of the dependencies a program needs, such as libraries, are hardcoded into
the program. Many programs will run perfectly even if there are no programs,
not even /bin/sh, present in the well-known search paths at all.
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But that doesn’t mean that all programs will run without a hitch. Apart from
configuration issues, where programs will look for their configuration in fixed
locations, there are programs, especially shell scripts, that assume that programs
they need can always be found in the default search path, which is simply not
always true on NixOS. It is also very common to set the interpreter of a shell
script on Linux systems to /bin/bash, but on NixOS, this path does not exist.

Even normal C programs can have problems during execution. Some programs
use dlopen to dynamically load a library at runtime, others have paths hard-
coded in scripts that are executed. Some programs, such as the ISC DHCP
suite, even go as far as defining the complete environment for child processes to
run in, including the PATH environment variable to look for other programs.

All these problems will only show up at runtime and are hard to detect at
buildtime.
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Chapter 8

Future work

There are still many areas where NixOS can be improved a lot, but which were
outside the scope of this project. Many of the concepts introduced in NixOS
have only been implemented as a proof of concept. While they work, they are
not very user friendly and require a lot of knowledge about how the system is
designed and how Nix works.

8.1 NixOS installer

8.1.1 Partitioning

NixOS expects a fixed harddisk layout: /dev/hda1 for installing all data and
/dev/hda2 for a swap partition. This is very unrealistic since many computers
do not have this layout, or users want to be able to install NixOS on other
partitions of their harddisk.

8.1.2 Graphical installer

One major improvement would be to make a graphical installer for NixOS,
including functionality for hardware detection and configuration, harddisk par-
titioning, package selection and so on.

Two popular graphical installers for Linux are anaconda[11] and YaST. The
anaconda programma is primarily used in Red Hat Linux and Red Hat Linux
derivates, such as Fedora, but it has also been ported to Progeny Linux, a Debian
GNU/Linux offshoot, which uses a different package management system than
Red Hat Linux. So far, YaST has only been used in SUSE Linux, mostly due to
licensing. Not too long ago the sources for YaST were released under the GNU
General Public License, but it has yet to be picked up by distributions other
than SUSE Linux.
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Both programs perform similar tasks during installation time, but differ in how
they do it and in the used technology.

anaconda YaST
textual interface yes yes
GUI toolkit GTK Qt
Usage installtime installtime and runtime
Default packages RPM and DEB (Progeny) RPM

Many tasks that these tools perform during install time are package management
system agnostic. The functionality for installing packages should be rewritten
to use Nix. Because the tools are platform agnostic it should be fairly straight-
forward to take out the RPM specific bits and replace them with calls to Nix.
The configuration the installer writes to the filesystem (hardware configuration,
and so on) should also be kept in a Nix expression or profile. This way the
configuration becomes an input for building the configuration scripts in a pure
way.

The graphical installer itself should also have to be built with Nix and run in a
pure Nix environment from the installation CD.

8.1.3 Network installs

Currently the installer scripts do not support installing a whole Nix environment
via a network. Since installing packages via a network is one of the strong points
of Nix, being able to do a full network install is, eventually, a must for NixOS.

Nix has the concept of a “network cache”1, which is built with nix-push. At
installation time the packages from the network cache are registered in the Nix
database with nix-pull, which tells Nix certain versions of packages can be
installed from the network cache.

Being able to install from a network cache can make it a lot easier to customize
the distribution at install time. To be able to do installs from a network cache
there is one important additional step that needs to be performed in the installer,
which is to bring up networking in the installer so packages can be downloaded
from the network (if the cache resides on a local disk or installer CD, as is done
in the current version of NixOS, this step is of course not needed). For this
to work properly some sort of hardware detection should be implemented to
determine what network card is in the machine and to load the right kernel
modules for that networkcard.

1The term “network cache” is a bit misleading, because the cache can also exist on a CD
or harddisk partition which is mounted at installation time. However, to be in sync with the
terminology, we’ll refer to this as a “network cache” as well
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8.2 Better startup scripts

The startup scripts that are in NixOS are very simple. No configuration is
done, except launching an emergency shell, with which it is possible to install
programs, install and launch services, and so on.

8.3 Support for more filesystems

Right now the support for filesystems is rather limited. This is due to the
fact that we load the kernel straight from the Nix store at boot time. The
bootloader, GRUB, has limited support for filesystems (ext2, ext3, minix,
fat, ffs, iso9660, jfs, reiserfs, ufs2, vstafs and xfs). Many distributions
are moving to filesystems which have data on disks managed by Logical Volume
Management (LVM), of which GRUB has no knowledge. If the Nix store is on
a LVM partition, GRUB cannot boot the kernel directly from the Nix store.
Linux distributions that use LVM, such as Red Hat Enterprise Linux or Fedora
(starting with version 3) keep a small ext3 partition, about 100 MB in size, on
which the kernel is stored.

There are a few approaches to tackle this limitation:

1. force users to stick to supported filesystems. This is not very realistic if
we want NixOS to be deployed in large scale environments.

2. keep a small Nix store on the bootpartition. This is undesirable in our
view, since at one point things will have to be thrown out of the Nix store
because of diskspace problems.

3. copy the kernel-image (and possibly an initial ramdisk) from the Nix store
to the small boot partition. This is not very elegant from a Nix point of
view, but probably the most workable solution. This copy action should be
done when a new version of the kernel is added to the boot configuration.
The risk is that the small boot partition will be filled with copies of unused
kernels.

8.4 Ports to other operating systems

Right now NixOS is very Linux centric, but since Nix itself has been ported
to other operating systems so can NixOS. For many Unix(-like) operating sys-
tems the sourcecode is available (*BSD, OpenSolaris) and many packages are
shared or similar between these operating systems and Linux. The challenge
in porting NixOS to these systems is that there is a stronger coupling between
the various components in the operating system, such as the kernel and the C
library, than on Linux. On other systems these components are expected to be
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deployed together. Decoupling these components is no easy task, but it would
be interesting to see if Nix would still work and how much work it would take
to do so.

8.5 User authentication and security

One of the weak points in NixOS currently is user authentication. The reason
for this lies in one of the the security trade-offs that was implemented in Nix,
namely the removal of support for so called “setuid” binaries. If a program
has the “setuid” bit set it will be running with all the privileges of the owner
of the program. An example of using “setuid” in user authentication is the
passwd program. This program has to read the /etc/passwd file (and also
/etc/shadow if shadow passwords are used). This file has to be protected from
write access by normal users, otherwise every user can add accounts, or delete
accounts, which only the superuser should be able to do. Yet every user has to
be able to update his/her password. Many other system components are also
“setuid” and owned by the superuser.

Binaries that are “setuid” are in general owned by users that have more access
to certain parts of the system than normal users. These binaries have been a
prime target for exploits. The reason “setuid” is not desirable in Nix is that in
general a package is not deleted from the Nix store when a package is upgraded,
unless it is explicitely deleted using the garbage collection mechanism. There is
no “destructive upgrade” as in conventional package management systems. If
“setuid” binaries would be allowed in Nix this would pose a serious threat to
system security.

For example, say version 1 of a program is “setuid” and owned by root and
contains a local exploit. Exploiting this hole by a local user would lead to full
access to the system for this user. Installation with Nix of a new version without
the exploit would not delete the vulnerable version, so the exploit would still
exist on the system and would still be exploitable.

The only good option to make “setuid” work in Nix and NixOS is to allow de-
structive upgrades, where a vulnerable version of a package is explicitely deleted
from the Nix store when a new version is installed. No work has currently been
done to implement this feature.
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Appendix A

Reducing the NixOS installer size

The default C library in NixOS is glibc. The size of a fully compiled glibc
is about 78 MB, of which a very large part will never be used by the NixOS
installer. There is a lot of unnecessary cruft which can be left out, without
losing any functionality, such as local language support.

Many Linux distributions try to reduce the size of their installer by either stati-
cally linking in a small subset of glibc into the installer, or by using one of the
alternative C libraries, such as uClibc or dietlibc or the more recent klibc,
which was developed specifically by the Linux kernel programmers for building
programs such as installers.

Tests with various C libraries have shown that the NixOS installer does not
really have issues when glibc is used for the installer on a pretty recent PC. A
40 MB ramdisk (it is 40 MB in size when compressed) still loads fine on a PC
with a memory configuration which would these days is considered ‘low end’:
256 MB. On other systems that are not equiped with a large amount of memory
(such as embedded systems) using a different C library would make more sense.
The reason why in NixOS a different C library is used to build some programs
in the installer is to save space on the installation CD. A smaller installer disk it
takes less time to load the initial ramdisk. This makes the install process a little
bit faster, and there is also more room on the CD to include other precompiled
software packages.

The dietlibc C library helps to decrease the size of the install disk. Tools
statically linked to dietlibc are a bit larger than tools that are dynamically
linked to glibc, but the size of all tools combined is not larger than the size of
the dynamically linked tools plus a full glibc.

Some programs (such as bash) don’t compile nicely with dietlibc. In these
cases the binaries that are used in NixOS are staticaly linked with glibc instead.
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source $stdenv/setup

ensureDir "$(dirname $out/bin/diet)"

cat > $out/bin/gcc << END
#! $SHELL -e
export NIX_GLIBC_FLAGS_SET=1
exec $dietlibc/bin/diet $gcc/bin/gcc "$@"
END

chmod +x $out/bin/gcc

ln -s $out/bin/gcc $out/bin/cc

Figure A.1: A wrapper around diet.

A.1 Support for dietlibc in Nix

The dietlibc library provides a wrapper around gcc, which sets the right flags
to link with dietlibc instead of glibc. The wrapper is called diet and is
followed by a normal invocation of gcc:

$ diet gcc -o foo foo.c

The diet wrapper expects gcc to be in the PATH. To be able to use the diet
wrapper in Nix a small wrapper around diet is used which is parameterized
with the version of gcc that should be used (see figure A.1).

Invocations of this wrapper (which is called gcc and behaves just like gcc itself)
will execute the diet wrapper with the right instance of gcc and link with
dietlibc. To prevent that gcc will still use the header files and libraries from
glibc the NIX GLIBC FLAGS SET variable is set to 1. The diet wrapper itself
will make sure that dietlibc is used.

The Nix expression for dietlibc in Nix is very straightforward (see figure A.2).

In Nix compiling and linking is done using a wrapper around gcc which sets,
amongst others, includepaths to find header files and various linking options to
link with the right instance of the C library. A wrapper for using dietlibc
with another version of gcc is also easily created.

Some symbols, like u short, are present in glibc but are not present by default
in dietlibc. There are some programs, like coreutils which will fail to compile
because of this. To be able to use these definitions an addition flag has to
be passed to the compiler, namely NIX CFLAGS COMPILE="-D BSD SOURCE=1",
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dietgcc = (import ../build-support/gcc-wrapper) {
nativeTools = false;
nativeGlibc = false;
gcc = (import ../os-specific/linux/dietlibc-wrapper) {
inherit stdenv dietlibc;
gcc = stdenv.gcc;

};
inherit (stdenv.gcc) binutils glibc;
inherit stdenv;

};

Figure A.2: Nix expression for diet.

which will take care of defining these symbols in the correct way.

The tools that are needed for the NixOS installer build without any significant
problems, or only need small patches.

A.2 Statically linking with glibc

During the development of the NixOS installer scripts the following code to take
the closure of a statically linked version of bash is being used:

bashStatic=$($NIX/nix-store -qR $(nix-store -r \
$(echo ’(import ./pkgs.nix).bashStatic’ | \
$NIX/nix-instantiate -)))

Since bash is linked statically, it is to be expected that there are no dependencies:
the binary can run perfectly standalone. But in this case glibc is still marked
as a dependency and returned in the closure.

As it turns out the store path for glibc is still present in the statically linked
bash. This happens because during compile time the binaries are linked with a
part of glibc which has these paths recorded in it.

The tool in Nix that scans for references of store paths in binaries finds these
paths and will therefore conclude that glibc is a dependency that is needed
at run time, when in fact it is not, which can be shown easily (the output was
slightly edited):

$ pwd
/nix/store/alrwlshj20lksprj52b1ivgk8s64xg8k-bash-3.0/bin
$ file bash
bash: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, statically linked, stripped
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The executable does contain unnecessary references to glibc:

$ strings bash | grep glibc
/nix/store/1mgfgy3ga4m9z60747s0yzxl0g6w5kxz-glibc-2.3.6/lib/locale
/nix/store/1mgfgy3ga4m9z60747s0yzxl0g6w5kxz-glibc-2.3.6/etc/localtime
/nix/store/1mgfgy3ga4m9z60747s0yzxl0g6w5kxz-glibc-2.3.6/share/zoneinfo
/nix/store/1mgfgy3ga4m9z60747s0yzxl0g6w5kxz-glibc-2.3.6/libexec/getconf
/nix/store/1mgfgy3ga4m9z60747s0yzxl0g6w5kxz-glibc-2.3.6/lib/gconv
/nix/store/1mgfgy3ga4m9z60747s0yzxl0g6w5kxz-glibc-2.3.6/lib/
/nix/store/1mgfgy3ga4m9z60747s0yzxl0g6w5kxz-glibc-2.3.6/etc/ld.so.cache

The files that are referenced are not used at all. To be able to still make a valid
closure using Nix the references to the Nix store can be replaced by a dummy
value:

$ strings bash | grep glibc
/nix/store/ffffffffffffffffffffffffffffffff-glibc-2.3.6/lib/locale
/nix/store/ffffffffffffffffffffffffffffffff-glibc-2.3.6/etc/localtime
/nix/store/ffffffffffffffffffffffffffffffff-glibc-2.3.6/share/zoneinfo
/nix/store/ffffffffffffffffffffffffffffffff-glibc-2.3.6/libexec/getconf
/nix/store/ffffffffffffffffffffffffffffffff-glibc-2.3.6/lib/gconv
/nix/store/ffffffffffffffffffffffffffffffff-glibc-2.3.6/lib/
/nix/store/ffffffffffffffffffffffffffffffff-glibc-2.3.6/etc/ld.so.cache

This storepath is not used in the Nix store and the closure will not suck in
glibc.
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